Automated learning with a probabilistic programming language: Birch
نویسندگان
چکیده
منابع مشابه
Probabilistic Automated Language Learning for Configuration Files
Software failures resulting from configuration errors have become commonplace as modern software systems grow increasingly large and more complex. The lack of language constructs in configuration files, such as types and grammars, has directed the focus of a configuration file verification towards building post-failure error diagnosis tools. In addition, the existing tools are generally languag...
متن کاملStan: A Probabilistic Programming Language
Stan is a probabilistic programming language for specifying statistical models. A Stan program imperatively defines a log probability function over parameters conditioned on specified data and constants. As of version 2.2.0, Stan provides full Bayesian inference for continuous-variable models through Markov chain Monte Carlo methods such as the No-U-Turn sampler, an adaptive form of Hamiltonian...
متن کاملAutomated Debugging with Tractable Probabilistic Programming
Probabilistic programming languages allow domain experts to specify generative models in a high-level language, and reason about those models using domainindependent algorithms. Given an input, a probabilistic program generates a distribution over outputs. In this work, we instead use probabilistic programming to explicitly reason about the distribution over programs, rather than outputs. We pr...
متن کاملA Programming Language for Probabilistic Computation
As probabilistic computations play an increasing role in solving various problems, researchers have designed probabilistic languages to facilitate their modeling. Most of the existing probabilistic languages, however, focus only on discrete distributions, and there has been little effort to develop probabilistic languages whose expressive power is beyond discrete distributions. This dissertatio...
متن کاملCTPPL: A Continuous Time Probabilistic Programming Language
Probabilistic programming languages allow a modeler to build probabilistic models using complex data structures with all the power of a programming language. We present CTPPL, an expressive probabilistic programming language for dynamic processes that models processes using continuous time. Time is a first class element in our language; the amount of time taken by a subprocess can be specified ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annual Reviews in Control
سال: 2018
ISSN: 1367-5788
DOI: 10.1016/j.arcontrol.2018.10.013